alexa Hybrid systems of silver nanoparticles generated on cellulose surfaces.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Ferraria AM, Boufi S, Battaglini N, Botelho do Rego AM, ReiVilar M

Abstract Share this page

Abstract A method to produce hybrid systems of cellulose ultrathin films containing immobilized silver nanoparticles (Ag NPs) generated and grown at the surface is presented. Ag NPs were produced via a mild wet chemistry technique on cellulose ultrathin films spin-coated on GaAs substrates and on modified films after grafting of diaminoalkanes activated by N,N'-carbonyldiimidazole. Appended amine groups operate as anchoring centers of the silver NPs enabling selective generation and immobilization of Ag NPs. The different phases of the modification process were followed by Fourier transform infrared spectroscopy (FTIRS) in attenuated total reflection in multiple internal reflections (ATR/MIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The generation of NPs is observed even on untreated cellulose surfaces with sizes ranging from 7 to 30 nm but not specifically at the surface. For modified surfaces with diaminoalkanes, higher NP density regions including extensive plates are obtained, which are specifically located at the film extreme surface. The highest NP density is achieved when the NP generation is performed on these modified surfaces in the presence of a carboxylic salt. This article was published in Langmuir and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords