alexa Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid.
Immunology

Immunology

Rheumatology: Current Research

Author(s): Kim IL, Mauck RL, Burdick JA

Abstract Share this page

Abstract Hyaline cartilage serves as a low-friction and wear-resistant articulating surface in load-bearing, diarthrodial joints. Unfortunately, as the avascular, alymphatic nature of cartilage significantly impedes the body's natural ability to regenerate, damage resulting from trauma and osteoarthritis necessitates repair attempts. Current clinical methods are generally limited in their ability to regenerate functional cartilage, and so research in recent years has focused on tissue engineering solutions in which the regeneration of cartilage is pursued through combinations of cells (e.g., chondrocytes or stem cells) paired with scaffolds (e.g., hydrogels, sponges, and meshes) in conjunction with stimulatory growth factors and bioreactors. A variety of synthetic and natural materials have been employed, most commonly in the form of hydrogels, and these systems have been tuned for optimal nutrient diffusion, connectivity of deposited matrix, degradation, soluble factor delivery, and mechanical loading for enhanced matrix production and organization. Even with these promising advances, the complex mechanical properties and biochemical composition of native cartilage have not been achieved, and engineering cartilage tissue still remains a significant challenge. Using hyaluronic acid hydrogels as an example, this review will follow the progress of material design specific to cartilage tissue engineering and propose possible future directions for the field. Copyright © 2011 Elsevier Ltd. All rights reserved.
This article was published in Biomaterials and referenced in Rheumatology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords