alexa Hydrological responses to land use cover changes in the source region of the Upper Blue Nile Basin, Ethiopia.

Author(s): Woldesenbet TA, Elagib NA, Ribbe L, Heinrich J

Abstract Share this page

Abstract Understanding how changes in distinctive land use/land cover (LULC) types influence the basin hydrology would greatly improve the predictability of the hydrological consequences of LULC dynamics for sustainable water resource management. As the main flow contributor to the River Nile, quantifying the effect of LULC change on water resources in the source regions is very important for the assessment of water resources availability and management downstream in the riparian states in general and the study watersheds in particular. In this study, an integrated approach comprising hydrological modeling and partial least squares regression (PLSR) was used to quantify the contributions of changes in individual LULC classes to changes in hydrological components. Two watersheds, namely Lake Tana and Beles in the Upper Blue Nile Basin in Ethiopia, were considered for the conduction of hydrological modeling using LULC maps and the Soil and Water Assessment Tool (SWAT). In the Tana sub-basin, it is found that expansion of cultivation land and decline in woody shrub are the major contributors to the rise in surface run-off and to the decline in the groundwater component. Similarly, decline of woodland and expansion of cultivation land are the major contributors to the increase in surface run-off and water yield in the Beles sub-basin. Increased run-off and reduced baseflow and actual evapotranspiration would have negative impacts on water resources, especially in relation to erosion and sedimentation in the upper Blue Nile River Basin. As a result, expansion of cultivation land and decline in woody shrub/woodland appear to be major environmental stressors affecting local water resources. The wider implications of the hydrological changes on the Easter Nile water resources are briefly discussed. The approach to assessing changes in basin hydrology could generally be applied to a variety of other watersheds for which temporal digital LULC maps are available. Copyright © 2016 Elsevier B.V. All rights reserved. This article was published in Sci Total Environ and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version