alexa Hydrophobic bacteria at the hexadecane-water interface: examination of micrometre-scale interfacial properties.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Kang Z, Yeung A, Foght JM, Gray MR

Abstract Share this page

Abstract Hydrophobic bacteria, like colloidal solids, can spontaneously adsorb onto fluid-fluid interfaces and modify their mechanical properties. In this study, two strains of bacteria--Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c--were prepared in their stationary (i.e. non-dividing) phase in the absence of biosurfactants; the cells were then used as emulsifiers to stabilize n-hexadecane droplets in aqueous environments. Using the micropipette technique, colloidal stability of the bacteria-coated droplets was examined through direct-contact experiments. Both types of bacteria were seen to function as effective stabilizers, although the Acinetobacter venetianus RAG-1 film provided stronger resistance to droplet-droplet coalescence. In addition to creating steric barriers, the adsorbed bacteria also interacted with one another at the interface, giving rise to higher order rheological properties. A technique of directly probing the mechanical properties of the emulsion drop surfaces (i.e. the adsorbed films) on the micrometre-scale revealed that (a) the films behaved as purely elastic sheets, and (b) with a reduction in cell concentration in the aqueous phase, less oil was emulsified, but the elastic moduli of the adsorbed films remained unchanged (suggesting an "all or none" adsorption process). These results are in contrast to a previous macroscopic (i.e. millimetre-scale) study, which showed that the absorbed films were viscoelastic, with the apparent elastic moduli depending strongly on cell concentration. The rheological properties of these bacteria-adsorbed interfaces appeared therefore to be length scale-dependent. This article was published in Colloids Surf B Biointerfaces and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords