alexa Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants.


Journal of Bone Research

Author(s): Fujinaga H

Abstract Share this page

Exposure of preterm infants to hyperoxia impairs vascular growth, contributing to the development of bronchopulmonary dysplasia and retinopathy of prematurity. Disruption of vascular endothelial growth factor (VEGF)-nitric oxide (NO) signaling impairs vascular growth. Endothelial progenitor cells (EPCs) may play an important role in vascular growth. Endothelial colony-forming cells (ECFCs), a type of EPC, from human preterm cord blood are more susceptible to hyperoxia-induced growth impairment than term ECFCs. Therefore, we hypothesized that hyperoxia disrupts VEGF-NO signaling and impairs growth in preterm ECFCs and that exogenous VEGF or NO preserves growth in hyperoxia. Growth kinetics of preterm cord blood-derived ECFCs (gestational ages, 27-34 wk) were assessed in room air (RA) and hyperoxia (40-50% oxygen) with or without VEGF, NO, or N(omega)-nitro-l-arginine. VEGF, VEGF receptor-2 (VEGFR-2), and endothelial NO synthase (eNOS) protein expression and NO production were compared. Compared with RA controls, hyperoxia significantly decreased growth, VEGFR-2 and eNOS expression, and NO production. VEGF treatment restored growth in hyperoxia to values measured in RA controls and significantly increased eNOS expression in hyperoxia. NO treatment also increased growth in hyperoxia. N(omega)-nitro-l-arginine treatment inhibited VEGF-augmented growth in RA and hyperoxia. We conclude that hyperoxia decreases growth and disrupts VEGF-NO signaling in human preterm ECFCs. VEGF treatment restores growth in hyperoxia by increasing NO production. NO treatment also increases growth during hyperoxia. Exogenous VEGF or NO may protect preterm ECFCs from the adverse effects of hyperoxia and preservation of ECFC function may improve outcomes of preterm infants.

This article was published in Am J Physiol Lung Cell Mol Physiol. and referenced in Journal of Bone Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version