alexa Hypertonic perfusion inhibits intracellular Na and Ca accumulation in hypoxic myocardium.


Journal of Clinical & Experimental Cardiology

Author(s): Ho HS, Liu H, Cala PM, Anderson SE

Abstract Share this page

Abstract Much evidence supports the view that hypoxic/ischemic injury is largely due to increased intracellular Ca concentration ([Ca](i)) resulting from 1) decreased intracellular pH (pH(i)), 2) stimulated Na/H exchange that increases Na uptake and thus intracellular Na (Na(i)), and 3) decreased Na gradient that decreases or reverses net Ca transport via Na/Ca exchange. The Na/H exchanger (NHE) is also stimulated by hypertonic solutions; however, hypertonic media may inhibit NHE's response to changes in pH(i) (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus we tested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Na(i) in myocardium and, thereby, decreases Ca(i) accumulation during hypoxia. Rabbit hearts were Langendorff perfused with HEPES-buffered Krebs-Henseleit solution equilibrated with 100\% O(2) or 100\% N(2). Hypertonic perfusion began 5 min before hypoxia or normoxic acidification (NH(4)Cl washout). Na(i), [Ca](i), pH(i), and high-energy phosphates were measured by NMR. Control solutions were 295 mosM, and hypertonic solutions were adjusted to 305, 325, or 345 mosM by addition of NaCl or sucrose. During 60 min of hypoxia (295 mosM), Na(i) rose from 22+/-1 to 100+/-10 meq/kg dry wt while [Ca](i) rose from 347+/-11 to 1,306+/-89 nM. During hypertonic hypoxic perfusion (325 mosM), increases in Na(i) and [Ca](i) were reduced by 65 and 60\%, respectively (P<0.05). Hypertonic perfusion also diminished Na uptake after normoxic acidification by 87\% (P<0.05). The data are consistent with the hypothesis that mild hypertonic perfusion diminishes acid-induced Na accumulation and, thereby, decreases Na/Ca exchange-mediated Ca(i) accumulation during hypoxia.
This article was published in Am J Physiol Cell Physiol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Saroj Velamakanni
    Multiparameter analysis using cell cycle biomarkers for breast cancer: Prognostic and predictive implications
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Sergey Suchkov
    Translational tools as applicable to autoimmune disorders: antibody-proteases as a generation of highly informative and unique biomarkers to monitor subclinical and clinical stages of demyelination in multiple sclerosis (MS)
    PPT Version | PDF Version
  • Lei Huo
    Diagnostic biomarkers in metastatic breast cancer
    PPT Version | PDF Version
  • Amila Orucevic
    Prognostic value of ER, PR, and HER2 breast cancer biomarkers and AJCC’s TNM staging system on overall survival of Caucasian females with breast cancer: An institution’s 10 year experience
    PPT Version | PDF Version
  • Kirill Shlyapnikov
    Fibromyalgia and chronic fatigue syndrome (CFS): translational biomarkers as applicable to monitor and to predict clinical manifestations
    PPT Version | PDF Version
  • Soo-Young Yoon
    Isocitrate dehydrogenase 1 (IDH1) mutation-specific twelve microRNA signatures as prognostic biomarkers in acute myeloid leukemia
    PPT Version | PDF Version
  • Subbu Apparsundaram
    Biomarkers and pharmacogenomics in CNS disorders
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • K.V. Ovsyannikov
    K.V. Ovsyannikov
    PPT Version | PDF Version
  • Wancai Yang
    Wancai Yang
    PPT Version | PDF Version
  • Youhe Gao
    Youhe Gao
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version