alexa Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats.


Biochemistry & Physiology: Open Access

Author(s): Wang Y, Campbell T, Perry B, Beaurepaire C, Qin L

Abstract Share this page

Abstract Hypoglycemic effects of berberine (BBR) have been reported in several studies in cell and animal models. However, the mechanisms of action are not fully understood. The present study was therefore aimed at determining the effect and underlying mechanisms of action of BBR on diabetes in a high-fat diet- and streptozotocin-induced diabetic rat model. Ninety male Sprague-Dawley rats, 150 to 170 g, were housed individually in cages. Two groups (n = 12 each) were fed the AIN-93G diet (normal control) and the same diet modified to contain 33\% fat and 2\% cholesterol (high-fat control), respectively. The third group (n = 66) was fed the high-fat diet and injected intraperitoneally 2 weeks later with 35 mg/kg body weight of streptozotocin in citrate buffer (pH 4.5). The rats in both control groups were injected with the vehicle. After 12 days, rats with semifasting (5 hours) blood glucose levels between 14 and 25 mmol/L were divided into 4 groups (n = 12 each) and treated with 0 (diabetic control), 50, 100, and 150 mg/kg/d of BBR for 6 weeks while continuing on the high-fat diet. Hypoglycemic effects of BBR were consistently demonstrated by semifasting and fasting blood glucose levels, and insulin-sensitizing effects were seen during oral glucose tolerance testing. Berberine also reduced food intake while having no effect on body weight in diabetic rats. No effect of BBR was observed on plasma levels of insulin, adipokines (leptin and adiponectin), or inflammatory cytokines (tumor necrosis factor-α and C-reactive protein). Berberine did not affect the state of oxidative stress as assessed by the activity of superoxide dismutase and the concentrations of malondialdehyde and reduced and oxidized glutathione in the liver. These findings demonstrated the hypoglycemic and insulin-sensitizing capabilities of BBR, with the underlying mechanisms awaiting further investigation. © 2011. Published by Elsevier Inc. All rights reserved. This article was published in Metabolism and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  •  2nd International Conference on Biochemistry
    Sep 21-22, 2017, Macau, Hong Kong

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version