alexa Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V,

Abstract Share this page

Abstract We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8\% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1\% O2). Ca-dependent NO synthase activity was increased in endothelium-denuded aortic segments from hypoxia-exposed rats. N-nitro-L-arginine methyl ester enhanced the contractile responses of endothelium-denuded aortic rings and mesenteric arterioles from hypoxia-exposed but not normoxic rats (P < 0.05). The hypoxia-inducible mRNA transcript expressed by human cells was found to contain a novel 5'-untranslated region, consistent with activation of transcription in the genomic region contiguous with exon 2. Translational efficiency of this transcript is markedly increased compared with previously described human nNOS mRNAs. Transgenic mice possessing a lacZ reporter construct under control of these genomic sequences demonstrated expression of the construct after exposure to hypoxia (8\% O2, 48 hours) in the aorta, mesenteric arterioles, renal papilla, and brain. These results reveal a novel human nNOS promoter that confers the ability to rapidly upregulate nNOS expression in response to hypoxia with a functionally significant effect on vascular smooth muscle contraction.
This article was published in J Clin Invest and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords