alexa Ibuprofen inhibits survival of bladder cancer cells by induced expression of the p75NTR tumor suppressor protein.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Khwaja F, Allen J, Lynch J, Andrews P, Djakiew D

Abstract Share this page

Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to reduce inflammation and as analgesics by inhibition of cyclooxygenase-2. At higher concentrations, some NSAIDs inhibit proliferation and induce apoptosis of cancer cells. Although several molecular mechanisms have been postulated to explain the anticancer effects of NSAIDs, they do not involve merely the inhibition of cyclooxygenase-2, and a more proximate initiator molecule may be regulated by NSAIDs to inhibit growth. The p75 neurotrophin receptor (p75NTR) is a proximate cell membrane receptor glycoprotein that has been identified as a tumor and metastasis suppressor. We observed that NSAID treatment of cell lines from bladder and other organs induced expression of the p75NTR protein. Of the different types of NSAIDs examined, ibuprofen was more efficacious than aspirin and acetaminophen and comparable with (R)-flurbiprofen and indomethacin in induction of p75NTR protein expression. This rank order NSAID induction of the p75NTR protein correlated with the ability of these NSAIDs to reduce cancer cell survival. To examine a mechanistic relationship between ibuprofen induction of p75NTR protein and inhibition of survival, bladder cancer cells were transfected with ponasterone A-inducible vectors that expressed a death domain-deleted (DeltaDD) or intracellular domain-deleted (DeltaICD) p75NTR product that acts as a dominant negative antagonist of the intact p75NTR protein. Expression of DeltaDD and DeltaICD rescued cells from ibuprofen inhibition of growth. These observations suggest that p75NTR is an important upstream modulator of the anticancer effects of NSAIDs and that ibuprofen induction of the p75NTR protein establishes an alternate mechanism by which ibuprofen may exert an anticancer effect. This article was published in Cancer Res and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version