alexa Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria.
Engineering

Engineering

Industrial Engineering & Management

Author(s): Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y,

Abstract Share this page

Abstract Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52 degrees C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homology of 61.0\% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8\% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO(2)), converted DBTO(2) to 2'-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30-52 degrees C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50 degrees C and DBT desulfurization (2-HBP production) at 40 degrees C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different. This article was published in Appl Microbiol Biotechnol and referenced in Industrial Engineering & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords