alexa Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Bondarenko PV, Chelius D, Shaler TA

Abstract Share this page

Abstract In this report, we describe an approach for identification and relative quantitation of individual proteins within mixtures using LC/MS/MS analysis of protein digests. First, the proteins are automatically identified by correlating the tandem mass spectra with peptide sequences from a database. Then, peak areas of identified peptides from one protein are added together to define the total reconstructed peak area of the protein digest. The total reconstructed peak area is further normalized to the peak area of an internal standard protein digest present in the mixture at a constant level. The method was illustrated using digested mixtures of five standard proteins as follows. One protein was gradually diluted while the other four components were present in the mixtures at constant level. This study revealed that relative peak area of the variable protein increased linearly (trend line R2 = 0.9978) with increasing amount from 10 to 1000 fmol, while relative peak areas of four constant proteins remained approximately the same (within 20\% relative standard deviation). To further evaluate the applicability of this method for the quantitation of proteins from complex mixtures, human plasma protein digest was spiked with 200 and 400 fmol of myoglobin digest. Total peak area of myoglobin peptides was normalized to the total peak area of apolipoprotein A-I peptides from human plasma, which played the role of an internal standard. The myoglobin/apolipoprotein A-I peak area ratio was 2 times larger for the human plasma digest spiked with a double amount of myoglobin. After several repetitions, the error of the relative peak area measurements remained below 11\%, suggesting that the method described here can be used for relative concentration measurements of proteins in the complex biological mixtures. In the presented method, chemical derivatization steps are not needed to create an internal standard, as in isotope-coded affinity tag or similar methods.
This article was published in Anal Chem and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords