alexa Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Hart AH, Hartley L, Ibrahim M, Robb L

Abstract Share this page

Abstract The murine Nanog gene, a member of the homeobox family of DNA binding transcription factors, has been shown recently to maintain pluripotency of embryonic stem cells. We have used a sequence homology and expression screen to identify and clone the mouse and human Nanog genes and characterized their phylogenetic context and expression patterns. We report here the gene structure and expression patterns of the mouse Nanog gene, the human Nanog and Nanog2 genes, and six processed human Nanog pseudogenes. Mouse Nanog expression is high in undifferentiated embryonic stem cells and is down-regulated during embryonic stem cell differentiation, concomitant with loss of pluripotency. Murine embryonic Nanog expression is detected in the inner cell mass of the blastocyst. After implantation, Nanog is detectable at embryonic day (E) 6 in proximal epiblast in the region of the presumptive primitive streak. Expression extends distally as the streak elongates during gastrulation and remains restricted to epiblast. Nanog RNA is down-regulated in cells ingressing through the streak to form mesoderm and definitive endoderm. Nanog expression also marks the pluripotent germ cells of the nascent gonad at E11.5-E12.5 and is highly expressed in germ cell tumour and teratoma-derived cell lines. Reverse transcriptase-polymerase chain reaction analysis detected mouse Nanog expression at low levels in several adult tissues. The human Nanog genes are expressed in embryonic stem cells and down-regulated in all adult tissues and differentiated cell lines examined. High levels of human Nanog expression were detected by Northern analysis in the undifferentiated N-Tera embryonal carcinoma cell line. The conservation in gene sequence, structure, and expression of mouse and human Nanog and Nanog2 genes may reflect a common role in the maintenance of pluripotency in both species. Copyright 2004 Wiley-Liss, Inc. This article was published in Dev Dyn and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords