alexa Identification of biomarkers for risk stratification of cardiovascular events using genetic algorithm with recursive local floating search.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Zhou X, Wang H, Wang J, Wang Y, Hoehn G, , Zhou X, Wang H, Wang J, Wang Y, Hoehn G,

Abstract Share this page

Abstract Conventional biomarker discovery focuses mostly on the identification of single markers and thus often has limited success in disease diagnosis and prognosis. This study proposes a method to identify an optimized protein biomarker panel based on MS studies for predicting the risk of major adverse cardiac events (MACE) in patients. Since the simplicity and concision requirement for the development of immunoassays can only tolerate the complexity of the prediction model with a very few selected discriminative biomarkers, established optimization methods, such as conventional genetic algorithm (GA), thus fails in the high-dimensional space. In this paper, we present a novel variant of GA that embeds the recursive local floating enhancement technique to discover a panel of protein biomarkers with far better prognostic value for prediction of MACE than existing methods, including the one approved recently by FDA (Food and Drug Administration). The new pragmatic method applies the constraints of MACE relevance and biomarker redundancy to shrink the local searching space in order to avoid heavy computation penalty resulted from the local floating optimization. The proposed method is compared with standard GA and other variable selection approaches based on the MACE prediction experiments. Two powerful classification techniques, partial least squares logistic regression (PLS-LR) and support vector machine classifier (SVMC), are deployed as the MACE predictors owing to their ability in dealing with small scale and binary response data. New preprocessing algorithms, such as low-level signal processing, duplicated spectra elimination, and outliner patient's samples removal, are also included in the proposed method. The experimental results show that an optimized panel of seven selected biomarkers can provide more than 77.1\% MACE prediction accuracy using SVMC. The experimental results empirically demonstrate that the new GA algorithm with local floating enhancement (GA-LFE) can achieve the better MACE prediction performance comparing with the existing techniques. The method has been applied to SELDI/MALDI MS datasets to discover an optimized panel of protein biomarkers to distinguish disease from control. This article was published in Proteomics and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords