alexa Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion.
Oncology

Oncology

Journal of Carcinogenesis & Mutagenesis

Author(s): Huang JB, Kindzelskii AL, Clark AJ, Petty HR

Abstract Share this page

Abstract Intracellular Ca(2+) signals have been associated with cell polarization and locomotion. As cell motility underlies metastasis, we have sought to better characterize the Ca(2+) signaling events in HT1080 fibrosarcoma cells. We have tested the hypothesis that low voltage-activated (LVA) and nonvoltage-gated (NVG) channels of HT1080 cells participate in dynamic Ca(2+)-signaling events leading to cell migration and invasion. Immunofluorescence microscopy has shown that HT1080 cells express LVA T-type Ca(2+) channels uniformly about the cell periphery, whereas the transient receptor potential-1 (a NVG cation channel) protein appears as punctate spots about a cell's periphery. HT1080 cells exhibit periodic intracellular Ca(2+) spikes. High-speed imaging revealed that the Ca(2+) spikes were composed of a single Ca(2+) wave traveling unidirectionally about the periphery of the cytoplasm in a clockwise fashion (as viewed from basal to apical surfaces). The T-type Ca(2+) channel blocker mibefradil inhibited Ca(2+) spikes and waves on cells and, in parallel, inhibited cell motility and invasion in a dose-dependent manner. Similar changes were noted with the NVG cation channel blockers Gd(3+) and carboxyamido-triazole. The combination of LVA and NVG blockers further reduced Matrigel invasiveness. However, the Ca(2+) channel blockers nicardipine, SKF96365, diltiazem, and verapamil had no effect at appropriate doses. These results indicate that certain LVA and NVG channels regulate HT1080 cell motility. In addition to providing novel information regarding cancer cell motility, we suggest that it may be possible to design drugs that inhibit a key Ca(2+) wave, thereby enhancing the efficacy of emerging therapeutic protocols.
This article was published in Cancer Res and referenced in Journal of Carcinogenesis & Mutagenesis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords