alexa Identification of novel vesicles in the cytosol to vacuole protein degradation pathway.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Huang PH, Chiang HL

Abstract Share this page

Abstract The key gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase), is induced when Saccharomyces cerevisiae are starved of glucose. FBPase is targeted from the cytosol to the yeast vacuole for degradation when glucose-starved cells are replenished with fresh glucose. Several vid mutants defective in the glucose-induced degradation of FBPase in the vacuole have been isolated. In some vid mutants, FBPase is found in punctate structures in the cytoplasm. When extracts from these cells are fractionated, a substantial amount of FBPase is sedimentable in the high speed pellet, suggesting that FBPase is associated with intracellular structures in these vid mutants. In this paper we investigated whether FBPase association with intracellular structures also existed in wild-type cells. We report the purification of novel FBPase-associated vesicles from wild-type cells to near homogeneity. Kinetic studies indicate that FBPase association with these vesicles is stimulated by glucose and occurs only transiently, suggesting that these vesicles are intermediate in the FBPase degradation pathway. Fractionation analysis demonstrates that these vesicles are distinct from known organelles such as the vacuole, ER, Golgi, mitochondria, peroxisomes, endosomes, COPI, or COPII vesicles. Under EM, these vesicles are 30-40 nm in diam. Proteinase K experiments indicate that the majority of FBPase is sequestered inside the vesicles. We propose that FBPase is imported into these vesicles before entering the vacuole.
This article was published in J Cell Biol and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version