alexa Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions


Advances in Automobile Engineering

Author(s): Yang Li, Hualiang Wei, S A Billings

Abstract Share this page

This brief introduces a new parametric modelling and identification method for linear time-varying systems using a block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be applied to track rapidly or even sharply varying processes and is developed by combining wavelet approximation theory with a block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstationary processes. Application of the proposed approach to a real mechanical system indicates better tracking capability of the multi-wavelet basis function algorithm compared with the normalized least squares or recursive least squares routines.

This article was published in IEEE xplore and referenced in Advances in Automobile Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version