alexa Idiot's Bayes: Not So Stupid after All?
Biomedical Sciences

Biomedical Sciences

International Journal of Biomedical Data Mining

Author(s): David J Hand, Keming Yu

Abstract Share this page

Folklore has it that a very simple supervised classification rule, based on the typically false assumption that the predictor variables are independent, can be highly effective, and often more effective than sophisticated rules. We examine the evidence for this, both empirical, as observed in real data applications, and theoretical, summarising explanations for why this simple rule might be effective. /// La tradition veut qu'une règle très simple assumant l'independance des variables prédictives, une hypothèse fausse dans la plupart des cas, peut être très efficace, souvent même plus efficace qu'une méthode plus sophistiquée en ce qui concerne l'attribution de classes a un groupe d'objects. A ce sujet, nous examinons les preuves empiriques, observées sur des données réelles, et les preuves théoriques, c'est-a-dire les raisons pour lesquelles cette simple règle pourrait faciliter le processus de tri.

  • To read the full article Visit
  • Subscription
This article was published in International Statistical Review / Revue Internationale de Statistique and referenced in International Journal of Biomedical Data Mining

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version