alexa IGF-binding protein-3-induced growth inhibition and apoptosis do not require cell surface binding and nuclear translocation in human breast cancer cells.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Butt AJ, Fraley KA, Firth SM, Baxter RC

Abstract Share this page

Abstract IGF-binding protein-3 (IGFBP-3) has both antiproliferative and proapoptotic effects on the growth of human breast cancer cells in vitro. However, the mechanisms governing these effects are not well understood. IGFBP-3 has been shown to associate with the cell surface through carboxyl-terminal residues. This suggests that it may interact with a specific cell surface receptor, although a signaling receptor for IGFBP-3 has not yet been fully characterized. IGFBP-3 also translocates to the nucleus and has been shown to interact with the nuclear RXRalpha, with evidence that this interaction may mediate its growth inhibitory and proapoptotic effects. Here we demonstrate that a mutant form of IGFBP-3 that has reduced cell surface binding and does not translocate to the nucleus is still growth inhibitory, elicits a potent G(1) cell cycle arrest, and induces apoptosis via modulation of Bcl-2 family members in human breast cancer cells. This suggests the existence of multiple pathways by which IGFBP-3 elicits its growth effects. This article was published in Endocrinology and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version