alexa IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Jacquemin V, ButlerBrowne GS, Furling D, Mouly V

Abstract Share this page

Abstract Insulin-like growth factor-1 (IGF-1) has been shown to induce skeletal muscle hypertrophy, to prevent the loss of muscle mass with ageing and to improve the muscle phenotype of dystrophic mice. We previously developed a model of IGF-1-induced hypertrophy of human myotubes, in which hypertrophy was not only characterized by an increase in myotube size and myosin content but also by an increased recruitment of reserve cells for fusion. Here, we describe a new mechanism of IGF-1-induced hypertrophy by demonstrating that IGF-1 signals exclusively to myotubes but not to reserve cells, leading, under the control of the transcription factor NFATc2, to the secretion of IL-13 that will secondly recruit reserve cells for differentiation and fusion. In addition, we show that IGF-1 also signals to myotubes to stimulate protein metabolism via Akt by (1) activating the mTOR-p70S6K-S6 pathway and inhibiting GSK-3beta, both involved in the control of protein translation, and (2) inhibiting the Foxo1-atrogin-1 protein degradation pathway. This article was published in J Cell Sci and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version