alexa Immune checkpoints in central nervous system autoimmunity.


Journal of Clinical & Cellular Immunology

Author(s): Joller N, Peters A, Anderson AC, Kuchroo VK

Abstract Share this page

Abstract A number of autoimmune diseases, including multiple sclerosis, are mediated by self-reactive T cells that have escaped the deletional mechanisms of central tolerance. Usually, these T cells are kept at bay through peripheral tolerance mechanisms, including regulation through coinhibitory receptors and suppression by regulatory T cells. However, if these mechanisms fail, self-reactive T cells are activated and autoimmune responses ensue. This review outlines how the coinhibitory receptors CTLA-4 (cytotoxic T-lymphocyte antigen-4), PD-1 (programed death-1), Tim-3 (T-cell immunoglobulin- and mucin domain-containing molecule 3), and TIGIT (T-cell immunoreceptor with immunoglobulin and ITIM domains) act at different checkpoints to inhibit autoreactive T cells and suppress the development of central nervous system autoimmunity. Loss of each of these receptors predisposes to autoimmunity, indicating a non-redundant role in maintaining peripheral tolerance. At the same time, their functional patterns seem to overlap to a large degree. Therefore, we propose that only the concerted action of a combination of inhibitory receptors is able to maintain peripheral tolerance and prevent autoimmunity. © 2012 John Wiley & Sons A/S.
This article was published in Immunol Rev and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version