alexa Immune system involvement in the regulation of ovarian function and augmentation of cancer.
Reproductive Medicine

Reproductive Medicine

Reproductive System & Sexual Disorders: Current Research

Author(s): Bukovsky A

Abstract Share this page

Abstract Increasing evidence indicates a role for the immune system and mesenchymal-epithelial interactions in the regulation of ovarian function. Cytokines produced by mesenchymal cells can stimulate development and regression of ovarian structures. We report here that mesenchymal cells releasing surface molecules among epithelial cells--namely vascular pericytes and monocyte-derived cells (MDC)--and intraepithelial T lymphocytes are associated with oogenesis and formation of new primary follicles in both fetal and adult human ovaries. These activated mesenchymal cells interact with the ovarian surface epithelium, which appears to be a source of secondary germ cells and granulosa cells. Activated pericytes and MDC are also associated with stimulation of thecal development during selection of growing secondary follicles from the cohort of primary follicles. However, survival of the dominant follicle during mid-follicular phase selection is associated with a lack of activity of mesenchymal cells and retardation of thecal development, since immature granulosa cells lacking aromatase are unable to resist high levels of thecal androgens. Once the selected follicle matures (late follicular phase), it shows enhanced activity of thecal mesenchymal cells and advanced thecal development. Corpus luteum (CL) development is accompanied by a high activity of vascular pericytes and MDC. In mature CL and CL of pregnancy, luteal MDC and pericytes show a stable (inactive) state. Regression of the CL is associated with regression of pericytes, transformation of MDC into dendritic cells, infiltration by T lymphocytes, and binding of immunoglobulin G to the luteal cells. The immunoglobulin M (IgM) binds to young but not mature luteal cells. In the CL of pregnancy, IgM binds to luteal vessels, but not to luteal cells. Regressing CL shows IgM binding to both luteal cells and vessels. In ovarian cancers, highly activated MDC and sometimes activated pericytes (poorly differentiated carcinomas) are present. IgM binding is similar to that seen in the CL of pregnancy. These data indicate that vascular pericytes, MDC, T cells, and immunoglobulins may play an important role in the regulation of ovarian physiology and contribute to the augmentation of ovarian cancer growth. This article was published in Microsc Res Tech and referenced in Reproductive System & Sexual Disorders: Current Research

Relevant Expert PPTs

Recommended Conferences

  • Annual Summit on HIV/AIDS, STDs & STIs
    Aug 07-09, 2017, Beijing, China

  • International Meeting on Women's Health and Breast Cancer
    Oct 12, 2017, Dubai, UAE
  • International Conference on Gynecology and Obstetrics Pathology
    October 23-24, 2017 Orlando, USA
  • 5th International Conference on HIV/AIDS, STDs and STIs
    Nov 13-14, 2017, Las Vegas, Nevada, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version