alexa Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Blackwell JM, Black GF, Peacock CS, Miller EN, Sibthorpe D,

Abstract Share this page

Abstract In the 1970s and 1980s, analysis of recombinant inbred, congenic and recombinant haplotype mouse strains permitted us to effectively 'scan' the murine genome for genes controlling resistance and susceptibility to leishmanial infections. Five major regions of the genome were implicated in the control of infections caused by different Leishmania species which, because they show conserved synteny with regions of the human genome, immediately provides candidate gene regions for human disease susceptibility genes. A common intramacrophage niche for leishmanial and mycobacterial pathogens, and a similar spectrum of immune response and disease phenotypes, also led to the prediction that the same genes/candidate gene regions might be responsible for genetic susceptibility to mycobacterial infections such as leprosy and tuberculosis. Indeed, one of the murine genes (Nramp1) was identified for its role in controlling a range of intramacrophage pathogens including leishmania, salmonella and mycobacterium infections. In recent studies, multicase family data on visceral leishmaniasis and the mycobacterial diseases, tuberculosis and leprosy, have been collected from north-eastern Brazil and analysed to determine the role of these candidate genes/regions in determining disease susceptibility. Complex segregation analysis provides evidence for one or two major genes controlling susceptibility to tuberculosis in this population. Family-based linkage analyses (combined segregation and linkage analysis; sib-pair analysis), which have the power to detect linkage between marker loci in candidate gene regions and the putative disease susceptibility genes over 10-20 centimorgans, and transmission disequilibrium testing, which detects allelic associations over 1 centimorgan (ca. 1 megabase), have been used to examine the role of four regions in determining disease susceptibility and/or immune response phenotype. Our results demonstrate: (i) the major histocompatibility complex (MHC: H-2 in mouse, HLA in man: mouse chromosome 17/human 6p; candidates class II and class III including TNF alpha/beta genes) shows both linkage to, and allelic association with, leprosy per se, but is only weakly associated with visceral leishmaniasis and shows neither linkage to nor allelic association with tuberculosis; (ii) no evidence for linkage between NRAMP1, the positionally cloned candidate for the murine macrophage resistance gene Ity/Lsh/Bcg (mouse chromosome 1/human 2q35), and susceptibility to tuberculosis or visceral leishmaniasis could be demonstrated in this Brazilian population; (iii) the region of human chromosome 17q (candidates NOS2A, SCYA2-5) homologous with distal mouse chromosome 11, originally identified as carrying the Scl1 gene controlling healing versus nonhealing responses to Leishmania major, is linked to tuberculosis susceptibility; and (iv) the 'T helper 2' cytokine gene cluster (proximal murine chromosome 11/human 5q; candidates IL4, IL5, IL9, IRF1, CD14) controlling later phases of murine L. major infection, is not linked to human disease susceptibility for any of the three infections, but shows linkage to and highly significant allelic association with ability to mount an immune response to mycobacterial antigens. These studies demonstrate that the 'mouse-to-man' strategy, refined by our knowledge of the human immune response to infection, can lead to the identification of important candidate gene regions in man.
This article was published in Philos Trans R Soc Lond B Biol Sci and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords