alexa Impact of expansion and redifferentiation conditions on chondrogenic capacity of cultured chondrocytes.

Journal of Bioengineering and Bioelectronics

Author(s): Yang KG, Saris DB, Geuze RE, Helm YJ, Rijen MH,

Abstract Share this page

Abstract Cartilage regeneration based on isolated and culture-expanded chondrocytes is studied in a variety of in vitro models, but with varying morphological quality of tissue synthesized. The goal of the present study was to investigate the extent of the influence of expansion and redifferentiation conditions on final tissue morphology by comparing 2 expansion and redifferentiation methods. Chondrocytes from 9 human donors were expanded in medium without growth factor supplementation (basic expansion condition [BEC]) or in medium with basic fibroblast growth factor (bFGF) supplementation (growth factor supplemented expansion condition [GFSEC]). After expansion, cells were either redifferentiated in pellet culture or seeded on collagen type II-coated filters. Post-expansion mRNA levels of collagen type I and II and Sox-5, -6, and 9, measured by semiquantitative real-time polymerase chain reaction (PCR), suggested that expansion in GFSEC results in increased dedifferentiation compared to BEC. However, after 28 days of redifferentiation culture, morphology of tissue synthesized by GFSEC-expanded chondrocytes scored significantly higher on the Bern scale compared to BEC (6.4 +/- 0.3 points vs. 4.5 +/- 0.3 points in pellet culture and 6.0 +/- 0.4 points vs. 4.5 +/- 0.3 points on collagen-coated filters; p < 0.05). Expansion in GFSEC compared to BEC increased proteoglycan (PG) synthesis rate at day 9 (4.0-fold in pellet culture and 1.9-fold on collagen-coated filters; p < 0.01), PG release (6.7-fold in pellet culture and 3.2-fold on collagen-coated filters; p < 0.001), and final PG content at day 28 (1.6-fold in pellet culture and 1.5-fold on collagen-coated filters; p < 0.05). Redifferentiation on collagen-coated filters compared to pellet culture increased PG synthesis rate at day 9 (5.2-fold in BEC-expanded chondrocytes and 2.6-fold in GFSEC-expanded chondrocytes; p < 0.01), PG release (4.2-fold in BEC-expanded chondrocytes and 3.1-fold in GFSECexpanded chondrocytes; p < 0.01), and final PG content (1.3-fold in BEC-expanded chondrocytes and 1.9- fold in GFSEC-expanded chondrocytes; p < 0.01). Moreover, as visualized via electron microscopy, chondrocytes and organization of extracellular matrix cultured on filters was more similar to those found for hyaline cartilage. In conclusion, chondrocyte expansion in GFSEC and redifferentiation on collagen-coated filters resulted in most optimal chondrogenesis. This article was published in Tissue Eng and referenced in Journal of Bioengineering and Bioelectronics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version