alexa Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment.
Infectious Diseases

Infectious Diseases

Malaria Control & Elimination

Author(s): Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H,

Abstract Share this page

Abstract Human monocyte-derived macrophages ingest diamide-treated red blood cells (RBC), anti-D immunoglobulin (Ig)G-opsonized RBC, or Plasmodium falciparum ring-stage parasitized RBC (RPRBC), degrade ingested hemoglobin rapidly, and can repeat the phagocytic cycle. Monocytes fed with trophozoite-parasitized RBC (TPRBC), which contain malarial pigment, or fed with isolated pigment are virtually unable to degrade the ingested material and to repeat the phagocytic cycle. Monocytes fed with pigment display a long-lasting oxidative burst that does not occur when they phagocytose diamide-treated RBC or RPRBC. The phorbol myristate acetate-elicited oxidative burst is irreversibly suppressed in monocytes fed with TPRBC or pigment, but not in monocytes fed with diamide-treated or IgG-opsonized RBC. This pattern of inhibition of phagocytosis and oxidative burst suggests that malarial pigment is responsible for the toxic effects. Pigment iron released in the monocyte phagolysosome may be the responsible element. 3\% of total pigment iron is labile and easily detached under conditions simulating the internal environment of the phagolysosome, i.e., pH 5.5 and 10 microM H2O2. Iron liberated from pigment could account for the lipid peroxidation and increased production of malondialdehyde observed in monocytes fed with pigment or in RBC ghosts and liposomes incubated at pH 6.5 in presence of pigment and low amounts of H2O2. Removal of the labile iron fraction from pigment by repeated treatments with 0.1 mM H2O2 at pH 5.5 reduces pigment toxicity. It is suggested that iron released from ingested pigment is responsible for the intoxication of monocytes. In acute and chronic falciparum infections, circulating and tissue-resident phagocytes are seen filled with TPRBC and pigment particles over long periods of time. Moreover, human monocytes previously fed with TPRBC are unable to neutralize pathogenic bacteria, fungi, and tumor cells, and macrophage responses decline during the course of human and animal malaria. The present results may offer a mechanistic explanation for depression of cellular immunity in malaria.
This article was published in J Exp Med and referenced in Malaria Control & Elimination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version