alexa Implant surfaces and interface processes.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Kasemo B, Gold J

Abstract Share this page

Abstract The past decades and current R&D of biomaterials and medical implants show some general trends. One major trend is an increased degree of functionalization of the material surface, better to meet the demands of the biological host system. While the biomaterials of the past and those in current use are essentially bulk materials (metals, ceramics, polymers) or special compounds (bioglasses), possibly with some additional coating (e.g., hydroxyapatite), the current R&D on surface modifications points toward much more complex and multifunctional surfaces for the future. Such surface modifications can be divided into three classes, one aiming toward an optimized three-dimensional physical microarchitecture of the surface (pore size distributions, "roughness", etc.), the second one focusing on the (bio) chemical properties of surface coatings and impregnations (ion release, multi-layer coatings, coatings with biomolecules, controlled drug release, etc.), and the third one dealing with the viscoelastic properties (or more generally the micromechanical properties) of material surfaces. These properties are expected to affect the interfacial processes cooperatively, i.e., there are likely synergistic effects between and among them: The surface is "recognized" by the biological system through the combined chemical and topographic pattern of the surface, and the viscoelastic properties. In this presentation, the development indicated above is discussed briefly, and current R&D in this area is illustrated with a number of examples from our own research. The latter include micro- and nanofabrication of surface patterns and topographies by the use of laser machining, photolithographic techniques, and electron beam and colloidal lithographies to produce controlled structures on implant surfaces in the size range 10 nm to 100 microns. Examples of biochemical modifications include mono- or lipid membranes and protein coatings on different surfaces. A new method to evaluate, e.g., biomaterial-protein and biomaterial-cell interactions--the Quartz Crystal Microbalance--is described briefly.
This article was published in Adv Dent Res and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords