alexa Implications of rotational kinematics for the oculomotor system in three dimensions.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Engineering and Medical Devices

Author(s): Tweed D, Vilis T

Abstract Share this page

Abstract 1. This paper develops three-dimensional models for the vestibuloocular reflex (VOR) and the internal feedback loop of the saccadic system. The models differ qualitatively from previous, one-dimensional versions, because the commutative algebra used in previous models does not apply to the three-dimensional rotations of the eye. 2. The hypothesis that eye position signals are generated by an eye velocity integrator in the indirect path of the VOR must be rejected because in three dimensions the integral of angular velocity does not specify angular position. Computer simulations using eye velocity integrators show large, cumulative gaze errors and post-VOR drift. We describe a simple velocity to position transformation that works in three dimensions. 3. In the feedback control of saccades, eye position error is not the vector difference between actual and desired eye positions. Subtractive feedback models must continuously adjust the axis of rotation throughout a saccade, and they generate meandering, dysmetric gaze saccades. We describe a multiplicative feedback system that solves these problems and generates fixed-axis saccades that accord with Listing's law. 4. We show that Listing's law requires that most saccades have their axes out of Listing's plane. A corollary is that if three pools of short-lead burst neurons code the eye velocity command during saccades, the three pools are not yoked, but function independently during visually triggered saccades. 5. In our three-dimensional models, we represent eye position using four-component rotational operators called quaternions. This is not the only algebraic system for describing rotations, but it is the one that best fits the needs of the oculomotor system, and it yields much simpler models than do rotation matrix or other representations. 6. Quaternion models predict that eye position is represented on four channels in the oculomotor system: three for the vector components of eye position and one inversely related to gaze eccentricity and torsion. 7. Many testable predictions made by quaternion models also turn up in models based on other mathematics. These predictions are therefore more fundamental than the specific models that generate them. Among these predictions are 1) to compute eye position in the indirect path of the VOR, eye or head velocity signals are multiplied by eye position feedback and then integrated; consequently 2) eye position signals and eye or head velocity signals converge on vestibular neurons, and their interaction is multiplicative.(ABSTRACT TRUNCATED AT 400 WORDS)
This article was published in J Neurophysiol and referenced in Journal of Biomedical Engineering and Medical Devices

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords