alexa Improved computation for Levenberg-Marquardt training.


Journal of Applied Mechanical Engineering

Author(s): Wilamowski BM, Yu H

Abstract Share this page

Abstract The improved computation presented in this paper is aimed to optimize the neural networks learning process using Levenberg-Marquardt (LM) algorithm. Quasi-Hessian matrix and gradient vector are computed directly, without Jacobian matrix multiplication and storage. The memory limitation problem for LM training is solved. Considering the symmetry of quasi-Hessian matrix, only elements in its upper/lower triangular array need to be calculated. Therefore, training speed is improved significantly, not only because of the smaller array stored in memory, but also the reduced operations in quasi-Hessian matrix calculation. The improved memory and time efficiencies are especially true for large sized patterns training. This article was published in IEEE Trans Neural Netw and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version