alexa Improved inhibitors of glucosylceramide synthase.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Lee L, Abe A, Shayman JA

Abstract Share this page

Abstract Previous work has led to the identification of inhibitors of glucosylceramide synthase, the enzyme catalyzing the first glycosylation step in the synthesis of glucosylceramide-based glycosphingolipids. These inhibitors have two identified sites of action: the inhibition of glucosylceramide synthase, resulting in the depletion of cellular glycosphingolipids, and the inhibition of 1-O-acylceramide synthase, resulting in the elevation of cell ceramide levels. A new series of glucosylceramide synthase inhibitors based on substitutions in the phenyl ring of a parent compound, 1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4), was made. For substitutions of single functional groups, the potency of these inhibitors in blocking glucosylceramide synthase was primarily dependent upon the hydrophobic and electronic properties of the substituents. An exponential relationship was found between the IC50 of each inhibitor and the sum of derived hydrophobic (pi) and electronic (sigma) parameters. This relationship demonstrated that substitutions that increased the electron-donating characteristics and decreased the lipophilic characteristics of the homologues enhanced the potency of these compounds in blocking glucosylceramide formation. A novel compound was subsequently designed and observed to be even more active in blocking glucosylceramide formation. This compound, D-threo-4'-hydroxy-P4, inhibited glucosylceramide synthase at an IC50 of 90 nM. In addition, a series of dioxane substitutions was designed and tested. These included 3',4'-methylenedioxyphenyl-, 3',4'-ethylenedioxyphenyl-, and 3'4'-trimethylenedioxyphenyl-substituted homologues. D-threo-3', 4'-Ethylenedioxy-P4-inhibited glucosylceramide synthase was comparably active to the p-hydroxy homologue. 4'-Hydroxy-P4 and ethylenedioxy-P4 blocked glucosylceramide synthase activity at concentrations that had little effect on 1-O-acylceramide synthase activity. These novel inhibitors resulted in the inhibition of glycosphingolipid synthesis in cultured cells at concentrations that did not significantly raise intracellular ceramide levels or inhibit cell growth.
This article was published in J Biol Chem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generals[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords