alexa Improvement of oxygen transfer coefficient during Penicillium canescens culture. Influence of turbine design, agitation speed, and air flow rate on xylanase production.
Microbiology

Microbiology

Fermentation Technology

Author(s): Gaspar A, Strodiot L, Thonart P

Abstract Share this page

Abstract To improve xylanase productivity from Penicillium canescens 10-10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h(-1)) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade's impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade's impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold. This article was published in Appl Biochem Biotechnol and referenced in Fermentation Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version