alexa Improving reverse vaccinology with a machine learning approach.
Materials Science

Materials Science

Journal of Nanomedicine & Biotherapeutic Discovery

Author(s): Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T, , Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T, , Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T, , Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T,

Abstract Share this page

Abstract Reverse vaccinology aims to accelerate subunit vaccine design by rapidly predicting which proteins in a pathogenic bacterial proteome are putative protective antigens. Support vector machine classification is a machine learning approach that has been applied to solve numerous classification problems in biological sciences but has not previously been incorporated into a reverse vaccinology approach. A training data set of 136 bacterial protective antigens paired with 136 non-antigens was constructed and bioinformatic tools were used to annotate this data for predicted protein features, many of which are associated with antigenicity (i.e. extracellular localization, signal peptides and B-cell epitopes). Annotation was used to train support vector machine classifiers that exhibited a maximum accuracy of 92\% for discriminating protective antigens from non-antigens as assessed by a leave-tenth-out cross-validation approach. These accuracies were superior to those achieved when annotating training data with auto and cross covariance transformations of z-descriptors for hydrophobicity, molecular size and polarity, or when classification was performed using regression methods. To further validate support vector machine classifiers, they were used to rank all the proteins in six bacterial proteomes for their antigenicity. Protective antigens from the training data were significantly recalled (enriched) in the top 75 ranked proteins for all six proteomes as assessed by a Fisher's exact test (p<0.05). This paper describes a superior workflow for performing reverse vaccinology studies and provides a benchmark training data set that can be used to evaluate future methodological improvements. Published by Elsevier Ltd. This article was published in Vaccine and referenced in Journal of Nanomedicine & Biotherapeutic Discovery

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords