alexa Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Sinha A, Hollingsworth KG, Ball S, Cheetham T

Abstract Share this page

Abstract OBJECTIVE: Suboptimal mitochondrial function has been implicated in several disorders in which fatigue is a prominent feature. Vitamin D deficiency is a well-recognized cause of fatigue and myopathy. The aim of this study was to examine the effects of cholecalciferol therapy on skeletal mitochondrial oxidative function in symptomatic, vitamin D-deficient individuals. DESIGN: This longitudinal study assessed mitochondrial oxidative phosphorylation in the gastrosoleus compartment using phosphorus-31 magnetic resonance spectroscopy measurements of phosphocreatine recovery kinetics in 12 symptomatic, severely vitamin D-deficient subjects before and after treatment with cholecalciferol. All subjects had serum assays before and after cholecalciferol therapy to document serum 25-hydroxyvitamin D (25OHD) and bone profiles. Fifteen healthy controls also underwent (31)P-magnetic resonance spectroscopy and serum 25OHD assessment. RESULTS: The phosphocreatine recovery half-time (τ1/2PCr) was significantly reduced after cholecalciferol therapy in the subjects indicating an improvement in maximal oxidative phosphorylation (34.44 ± 8.18 sec to 27.84 ± 9.54 sec, P < .001). This was associated with an improvement in mean serum 25OHD levels (8.8 ± 4.2 nmol/L to 113.8 ± 51.5 nmol/L, P < .001). There was no difference in phosphate metabolites at rest. A linear regression model showed that decreasing serum 25OHD levels was associated with increasing τ1/2PCr (r = -0.41, P = .009). All patients reported an improvement in fatigue after cholecalciferol therapy. CONCLUSIONS: Cholecalciferol therapy augments muscle mitochondrial maximal oxidative phosphorylation after exercise in symptomatic, vitamin D-deficient individuals. This finding suggests that changes in mitochondrial oxidative phosphorylation in skeletal muscle could at least be partly responsible for the fatigue experienced by these patients. For the first time, we demonstrate a link between vitamin D and the mitochondria in human skeletal muscle. This article was published in J Clin Endocrinol Metab and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords