alexa In situ bioremediation of naphthenic acids contaminated tailing pond waters in the athabasca oil sands region--demonstrated field studies and plausible options: a review.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Quagraine EK, Peterson HG, Headley JV

Abstract Share this page

Abstract Currently, there are three industrial plants that recover oil from the lower Athabasca oil sands area, and there are plans in the future for several additional mines. The extraction procedures produce large volumes of slurry wastes contaminated with naphthenic acids (NAs). Because of a "zero discharge" policy the oil sands companies do not release any extraction wastes from their leases. The process-affected waters and fluid tailings contaminated with NAs are contained on-site primarily in large settling ponds. These fluid wastes from the tailing ponds can be acutely and chronically toxic to aquatic organisms, and NAs have been associated with this toxicity. The huge tailings containment area must ultimately be reclaimed, and this is of major concern to the oil sands industry. Some reclamation options have been investigated by both pioneering industries (Syncrude Energy Inc. and Suncor Inc.) with mixed results. The bioremediation techniques have limited success to date in biodegrading NAs to levels below 19 mg/L. Some tailing pond waters have been stored for more than 10 years, and it appears that the remaining high molecular weight NAs are refractory to the natural biodegradation process in the ponds. Some plausible options to further degrade the NAs in the tailings pond water include: bioaugmentation with bacteria selected to degrade the more refractory classes of NAs; the use of attachment materials such as clays to concentrate both the NA and the NA-degrading bacteria in their surfaces and/or pores; synergistic association between algae and bacteria consortia to promote efficient aerobic degradation; and biostimulation with nutrients to promote the growth and activity of the microorganisms.
This article was published in J Environ Sci Health A Tox Hazard Subst Environ Eng and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version