alexa In vitro and in vivo characteristics of connexin 43-modified human skeletal myoblasts as candidates for prospective stem cell therapy for the failing heart.


Journal of Clinical & Experimental Cardiology

Author(s): Kolanowski TJ, Rozwadowska N, Malcher A, Szymczyk E, Kasprzak JD,

Abstract Share this page

Abstract BACKGROUND: Previously, connexin 43-modified skeletal myoblasts (MbCx) were shown to reduce the pro-arrhythmic effect during the regeneration of heart tissue in an animal model of infarction. To increase the relevance to clinical implementation, in this study, we introduced connexin 43 into human myoblasts using a highly safe non-viral vector and demonstrated that their transplantation had a positive effect on the function of the injured heart. METHODS AND RESULTS: Myoblasts were efficiently transfected with a pCiNeo-GJA1 plasmid (65.72\%). qPCR analysis revealed over 32-fold higher expression of the connexin 43 gene in the MbCx cell population compared to 'native' controls. The susceptibility of the myoblasts to oxidative stress conditions (p<0.001) and the fusion index (p<0.01) were increased in the MbCx cells. Additionally, we observed changes in the MYOG and MYH2 gene expression levels in the GJA1-modified myoblasts. Finally, we observed a significant improvement in the post-infarction echocardiographic parameters after intervention using MbCx cells compared with non-transfected myoblasts (MbWt) and the control (0.9\% NaCl), wherein a significant decrease in the left ventricular area change in the short axis (SAX AC\%) was observed at the two-month follow-up (p<0.05 and p<0.01, respectively). CONCLUSIONS: We demonstrated the positive effect of connexin 43 overexpression on the biology and function of human skeletal myoblasts in the context of their potential clinical applications. Our preclinical studies using a mouse infarction model indicated the positive effect of MbCx implantation on the function of the injured heart. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved. This article was published in Int J Cardiol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version
  • Fatih Yalcin
    PDF Version
  • Samuel C Dudley
    Novel biomarkers for diastolic heart failure
    PDF Version
  • Abdulaziz U Joury
    Acute Myocardial Infarction as First Presentation among patients with Coronary Heart Disease
    PPT Version | PDF Version
  • Helena Dominguez
    Can we protect the brain against thromboembolism during open heart surgery? LAACS project
    PDF Version
  • Saverio Gentile
    Ion channels phosphorylopathy: 3rd International Conference on Clinical & Experimental Cardiology April 15-17, 2013 A link between genomic variations and heart arrhythmia
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version