alexa In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens.


Journal of Microbial & Biochemical Technology

Author(s): Klose V, Bayer K, Bruckbeck R, Schatzmayr G, Loibner AP

Abstract Share this page

Abstract A wide range of enteropathogens cause costly diarrhoeal diseases in fattening piglets and account for food-related infections in humans. The objective of this study was to screen beneficial bacterial strains from the gastrointestinal tract of various animal sources for antagonistic activity against diverse pathogens associated with hazardous pig production times. Using agar spot assays, 15 well-characterized strains belonging to Lactobacillus, Enterococcus, Bifidobacterium and Bacillus were studied for inhibition of Clostridium perfringens type A, various serovars of enterotoxigenic Escherichia coli and Salmonella enterica, as well as Brachyspira pilosicoli. Strong antagonists were further analyzed by studying their cell-free supernatants with and without pH neutralization, proteinase K and catalase treatment. Enterobacteriaceae were effectively inhibited by Lactobacillus salivarius and Lactobacillus reuteri strains, independent from the animal source, and on a lower level by single strains belonging to Lactobacillus mucosae, Lactobacillus amylovorus and Bifidobacterium thermophilum, due to organic acid production. The Bacillus subtilis strain was found to produce an anti-clostridial and anti-Brachyspira metabolite of proteinaceous nature. Homofermentative lactobacilli and B. thermophilum could suppress the growth of B. pilosicoli, the causative agent of intestinal spirochaetosis, whereas heterofermentative strains belonging to L. reuteri and L. mucosae had no effect. The lactic acid bacteria exerted their activity primarily by organic acid release, except one Enterococcus faecium and L. amylovorus strain, which exhibited antagonism through joint activity of lactate and hydrogen peroxide. The findings of this study provide a basis for further in vitro studies and encourage feeding studies to evaluate the antagonistic potential of promising strains in pig production. Copyright 2010 Elsevier B.V. All rights reserved. This article was published in Vet Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

1-702-714-7001Extn: 9042

General Science

Andrea Jason

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001Extn: 9042

© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version