alexa In vitro degradation of articular cartilage: does trypsin treatment produce consistent results?
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Moody HR, Brown CP, Bowden JC, Crawford RW, McElwain DL,

Abstract Share this page

Abstract It is common practice in laboratories to create models of degraded articular cartilage in vitro and use these to study the effects of degeneration on cartilage responses to external stimuli such as mechanical loading. However, there are inconsistencies in the reported action of trypsin, and there is no guide on the concentration of trypsin or the time to which a given sample can be treated so that a specific level of proteoglycan depletion is achieved. This paper argues that before any level of confidence can be established in comparative analysis it is necessary to first obtain samples with similar properties. Consequently, we examine the consistency of the outcome of the artificial modification of cartilage relative to the effects of the common enzyme, trypsin, used in the process of in vitro proteoglycan depletion. The results demonstrate that for a given time and enzyme concentration, the action of trypsin on proteoglycans is highly variable and is dependent on the initial distribution and concentration of proteoglycans at different depths, the intrinsic sample depth, the location in the joint space and the medium type, thereby sounding a note of caution to researchers attempting to model a proteoglycan-based degeneration of articular cartilage in their experimental studies.
This article was published in J Anat and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords