alexa In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4.


Journal of Antivirals & Antiretrovirals

Author(s): Margot NA, Hluhanich RM, Jones GS, Andreatta KN, Tsiang M,

Abstract Share this page

Abstract Elvitegravir is a strand transfer inhibitor of HIV-1 integrase that is currently undergoing phase 3 clinical testing. The two predominant metabolites of elvitegravir, M1 and M4 (elvitegravir hydroxide and elvitegravir glucuronide), have been shown to inhibit HIV-1 integrase in vitro. While they are markedly less potent than elvitegravir and present only at low levels in plasma clinically, we investigated their potential to select for elvitegravir resistance in vitro. Resistance selection experiments using metabolites M1 and M4 led to the development of the previously reported elvitegravir integrase resistance mutations H51Y, T66A, E92G, and S147G, as well as a novel S153F substitution. Additional resistance selection experiments using elvitegravir led to the development of previously reported integrase inhibitor resistance mutations (T66I, F121Y, and S153Y) as well as a novel R263K integrase mutation. Phenotypic analyses of site-directed mutants with these mutations demonstrated broad cross-resistance between elvitegravir and its M1 and M4 metabolites with more limited cross-resistance to the integrase inhibitor raltegravir. Overall, our in vitro studies demonstrate that the resistance profile of the M1 and M4 metabolites of elvitegravir overlaps with that of the parent molecule elvitegravir; as such, their presence at low levels is not considered clinically relevant. Copyright © 2011 Elsevier B.V. All rights reserved. This article was published in Antiviral Res and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

  • Limin Chen
    An 18- Gene Signature Predicting Treatment Response to Interferon in Patients Chronically Infected with Hepatitis C Virus
    PPT Version | PDF Version
  • Sudha Srivastava
    Novel Inhibitor by Modifying Oseltamivir Based on Neuraminidase Structure for Treating Drug-Resistant H5N1 Virus Using Molecular Docking NMR and DSC Methods
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version