alexa In vitro stimulation with WT1 peptide-loaded Epstein-Barr virus-positive B cells elicits high frequencies of WT1 peptide-specific T cells with in vitro and in vivo tumoricidal activity.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Doubrovina ES, Doubrovin MM, Lee S, Shieh JH, Heller G,

Abstract Share this page

Abstract The Wilms tumor protein (WT1) is overexpressed in most acute and chronic leukemias. To develop a practicable, clinically applicable approach for generation of WT1-specific T cells and to comparatively evaluate the immunogenicity of WT1 in normal individuals, we sensitized T cells from 13 HLA-A0201+ and 5 HLA-A2402+ donors with autologous EBV-transformed B cells or cytokine-activated monocytes, loaded with the HLA-A0201-binding WT1 peptides (126-134)RMFPNAPYL or (187-195)SLGEQQYSV or a newly identified HLA-A2402-binding WT1 peptide (301-310)RVPGVAPTL. WT1-specific T cells were regularly generated from each donor. T cells sensitized with peptide-loaded EBV-transformed B cells generated higher numbers of WT1-specific T cells than peptide-loaded cytokine-activated monocytes. Contrary to expectations, the frequencies of WT1 peptide-specific T cells were equivalent to those generated against individual highly immunogenic HLA-A0201-binding EBV peptides. Each of these T-cell lines specifically killed WT1+ leukemias and solid tumors in an HLA-restricted manner but did not lyse autologous or HLA-matched normal CD34+ hematopoietic progenitor cells or reduce their yield of colony-forming unit-granulocyte-macrophage (CFU-GM), burst-forming unit erythroid (BFU-E), or mixed colonies (CFU-mix). Furthermore, WT1 peptide-specific T cells after adoptive transfer into nonobese diabetic-severe combined immunodeficient mice bearing subcutaneous xenografts of WT1+ and WT1- HLA-A0201+ leukemias preferentially accumulated in and induced regressions of WT1+ leukemias that expressed the restricting HLA allele. Such cells are clinically applicable and may prove useful for adoptive cell therapy of WT1+ malignant diseases in humans. This article was published in Clin Cancer Res and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords