alexa In vitro synthesis of hyaluronan by a single protein derived from mouse HAS1 gene and characterization of amino acid residues essential for the activity.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Yoshida M, Itano N, Yamada Y, Kimata K

Abstract Share this page

Abstract HAS1 was expressed as a FLAG-tagged HAS1 fusion protein in COS-1 cells. This recombinant protein was extracted with CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid) from the membrane fraction and purified by anti-FLAG affinity chromatography and subsequent SDS-polyacrylamide gel electrophoresis. A protein solubilized from the one single band on the gel was able to synthesize hyaluronan when incubated with UDP-GlcNAc and UDP-GlcA as donor substrates without any further additions. The detergent-solubilized and purified HAS1 protein, however, exhibited quite different kinetic properties from the membrane-bound protein. When assayed under the reconstitutive conditions where the reaction mixture was layered onto the buffer containing high concentration of CHAPS, the activity was enhanced and the kinetic properties became similar to those of the membrane-bound protein. In addition, a HAS1 gene product by an in vitro transcription/translation system also showed HAS1 activity under the reconstitutive conditions. To our surprise, when incubated with UDP-GlcNAc alone, the protein was found to synthesize chito-oligosaccharide. Taking advantage of these enzyme reaction properties, active sites on the protein involved in for hyaluronan and chito-oligosaccharide synthesis were characterized. Site-directed mutagenesis induced in the cytoplasmic central loop domain of the protein revealed that several amino acid residues conserved among those domains of various proteins of a HAS family were essential for both hyaluronan and chito-oligosaccharide syntheses but one of them was not for chito-oligosaccharide synthesis. The substitutions that caused partial or severe loss of the activity gave no significant changes of the K(m) values of the mutated proteins, suggesting that no conformational or other indirect changes were involved in the effect. Taken together, the results suggest that the HAS1 protein alone is able to synthesize hyaluronan and different amino acid residues on the cytoplasmic central loop domain are involved in transferring GlcNAc and GlcA residues, respectively.
This article was published in J Biol Chem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords