alexa In vitro transport of active alpha(1)-antitrypsin to the apical surface of epithelia by targeting the polymeric immunoglobulin receptor.
Immunology

Immunology

Rheumatology: Current Research

Author(s): Eckman EA, Mallender WD, Szegletes T, Silski CL, Schreiber JR,

Abstract Share this page

Abstract In cystic fibrosis (CF), the intense host inflammatory response to chronic infection largely accounts for the progressive pulmonary disease, and ultimately death. Neutrophils are the prominent inflammatory cells in the lungs of patients with CF, and large amounts of neutrophil elastase (NE) are released during phagocytosis. Besides having direct effects on structural elastin, NE stimulates the release of proinflammatory mediators from the respiratory epithelium and is a potent secretogogue. Therapeutic use of elastase inhibitors in CF has been complicated by difficulties in delivery to the critical site in the airway-the surface of the epithelium. We describe a unique strategy to protect the respiratory epithelial cell surface directly by capitalizing on the nondegradative transcytotic pathway of the polymeric immunoglobulin receptor (pIgR). A recombinant fusion protein was constructed consisting of an antihuman pIgR single-chain Fv (scFv) antibody linked to human alpha(1)-antitrypsin (A1AT), an inhibitor of NE. The recombinant scFv-A1AT fusion protein bound specifically to the pIgR on the basolateral surface of an epithelial cell monolayer, and was transported and released into the apical medium where the A1AT domain was capable of forming an inactivation complex with NE. Thus, A1AT linked to an antihuman pIgR scFv was delivered in receptor-specific fashion from the basolateral to apical surface and was released as an active antiprotease, indicating that it is feasible to deliver therapeutic proteins to the apical surface of epithelia by targeting the pIgR. This article was published in Am J Respir Cell Mol Biol and referenced in Rheumatology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords