alexa In vivo corrosion of four magnesium alloys and the associated bone response.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Witte F, Kaese V, Haferkamp H, Switzer E, MeyerLindenberg A,

Abstract Share this page

Abstract Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation. This article was published in Biomaterials and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version