alexa In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.

Journal of Bioengineering and Bioelectronics

Author(s): Teixeira S, Fernandes H, Leusink A, van Blitterswijk C, Ferraz MP,

Abstract Share this page

Abstract During the last decades, different materials of both natural and synthetic origin have been developed with the aim of inducing and controlling osteogenic differentiation of mesenchymal stem cells (MSCs). In order for that to happen, it is necessary that the material to be implanted obey a series of requirements, namely: osteoconduction, biocompatibility, and biodegradability. Additionally, they must be low-priced, easy to produce, shape, and store. Hydroxyapatite (HA) is a well known ceramic with a composition similar to the mineral component of bone and is highly biocompatible and easy to obtain and/or process. On the other hand, collagen is the main structural protein present in the human body and bone. In this study, a polymer replication method was applied and a highly porous HA scaffold was produced. Collagen was later incorporated to improve the biological properties of the scaffold while resembling the bone composition. The scaffolds were characterized by means of scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. In vitro and in vivo testing was performed in all scaffolds produced. The goal of this study was to evaluate the in vivo osteogenic potential of MSCs from two different species seeded on the different HA basedporous scaffolds with collagen type I. The resultsindicate that all scaffolds exhibit relevant bone formation, being more prominent in the case of the HA scaffolds. Copyright 2009 Wiley Periodicals, Inc. This article was published in J Biomed Mater Res A and referenced in Journal of Bioengineering and Bioelectronics

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords