alexa In vivo maps of extracellular pH in murine melanoma by CEST-MRI.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Imaging & Dynamics

Author(s): Delli Castelli D, Ferrauto G, Cutrin JC, Terreno E, Aime S

Abstract Share this page

Abstract PURPOSE: A novel method based on the use of Yb-HPDO3A as MRI Para-CEST agent for in vivo pH mapping of the tumor region in a melanoma murine model is reported. This method does not require the knowledge of the concentration of the imaging agent. METHODS: C57BL/6-mice were inoculated with B16-F10 cells. CEST-MR images of tumor and bladder were acquired upon the i.v. administration of Yb-HPDO3A (1.2 mmol/Kg). pH was assessed by the use of a ratiometric method. RESULTS: Yb-HPDO3A distributes well in the extracellular space of the tumor allowing the detection of good levels of saturation transfer (ST). It is excreted throughout kidneys and accumulated in the bladder thus yielding a strong CEST signal from urine. By comparing the ST\% obtained upon selective irradiation of the two OH resonances belonging to the two isomeric forms of Yb-HPDO3A, it has been possible to measure the extracellular pH for each voxel (0.22 mm(3) ). The obtained pH-maps of tumors show a great heterogeneity. Marked differences are associated to tumor staging. CONCLUSION: The application of Yb-HPDO3A to measure extracellular tumor pH provides a good spatio-temporal resolution and it does not require the prior knowledge of the contrast agent concentration. The herein reported data support the potential clinical translation of Yb-HPDO3A. Copyright © 2013 Wiley Periodicals, Inc. This article was published in Magn Reson Med and referenced in Journal of Molecular Imaging & Dynamics

Relevant Expert PPTs

Relevant Speaker PPTs

  • Eugene Stephane Mananga
    On Fer and Floquet-Magnus expansions: Application in solid-state nuclear magnetic resonance and physics
    PDF Version
  • Trung-Dinh Han
    Device-To-Device (D2D) Communication in 5G Cellular Networks
    PPT Version | PDF Version
  • Werner Boecker
    Syringomatous tumour of the nipple and low-grade adenosquamous carcinoma: Evidence for a common origin
    PPT Version | PDF Version
  • Tibor Tot
    Multiparameter characterization of breast carcinoma: subgross, microscopy, proteins, and genes
    PPT Version | PDF Version
  • Fathia El Sharkawi
    The effect of PTEN and TRAIL genes loaded on nanoparticles on hepatocellular carcinoma
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Devathri Nanayakkara
    Context specific role of deubiquitylase enzyme, USP9X in oral squamous cell carcinoma
    PPT Version | PDF Version
  • Giselle L Gotamco
    A case of hybrid carcinoma of the nose
    PDF Version
  • Igor Malyshev
    GENETIC FEATURES OF NO GENERATING SYSTEMS AND RESISTANT TO EHRLICH ASCITES CARCINOMA
    PPT Version | PDF Version
  • Akif Enes Arikan
    Comparison of Microwave Mamma Tomography (MMT) with Magnetic Resonance Imaging; Preliminary report of a new technique, Cerrahpasa experience
    PPT Version | PDF Version
  • Lubna Mushtaque Vohra
    Metaplastic carcinoma of the breast and p16 positivity: What does it mean?
    PPT Version | PDF Version
  • Rubens Mendes Canuto de Oliveira
    Progressive Form Of Biliary And Hepatic Paracoccidioidomycosis, Simulating Cholangiocarcinoma
    PPT Version | PDF Version
  • Louisa Ming Yan Chung
    New approach in nutrition education: Electronic dietary recording and self-monitoring
    PPT Version | PDF Version
  • C Peter Waegemann
    What Can We Learn from the Failure of Electronic Health Record Systems?
    PPT Version | PDF Version
  • Myron R Szewczuk
    Transcriptional factor Snail and MMP-9 signaling axis controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version