alexa In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease.


Internal Medicine: Open Access

Author(s): Boulanger CM, Amabile N, Gurin AP, Pannier B, Leroyer AS,

Abstract Share this page

Abstract Shear stress is a major determinant of endothelial apoptosis, but its role in the in vivo release of shed membrane microparticles by endothelial cells remains unknown. Thus, we sought to evaluate the possible relationship between circulating endothelial microparticle levels and laminar shear stress in end-stage renal disease patients with high cardiovascular risk, whose levels of endothelial microparticles are elevated. In 34 hemodialyzed patients, we analyzed the relationships between brachial artery and aortic shear stress and circulating microparticles levels. Only endothelial microparticles were inversely correlated with laminar shear stress values (P<0.0001) or its components shear rate and whole blood viscosity, independent of age or arterial blood pressure. Changes in hematocrit resulting from hemodialysis-induced hemoconcentration or erythropoietin anemia improvement induced a significant increase in whole blood viscosity and shear stress and were associated with a significant decrease in endothelial microparticles with a significant and inverse correlation with changes in hematocrit/hemoglobin or laminar shear stress. These results demonstrate that, in end-stage renal disease patients, laminar shear stress is an important determinant of plasma levels of endothelial microparticles. Anemia as an important determinant of whole blood viscosity and shear stress, contributes to endothelial apoptosis, and could play an indirect role in the pathogenesis of accelerated arteriosclerosis in this high-risk population. This article was published in Hypertension and referenced in Internal Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version