alexa Inactivation of YAP1 enhances sensitivity of the yeast RNR3-lacZ genotoxicity testing system to a broad range of DNA-damaging agents.


Journal of Biosensors & Bioelectronics

Author(s): Zhang M, Zhang C, Li J, Hanna M, Zhang X,

Abstract Share this page

Abstract Despite the great advances by using microorganism-based genotoxicity testing systems to assess environmental genotoxic compounds, most of them respond poorly, particularly to oxidative agents. In this study, we systematically examined the RNR3-lacZ reporter gene expression in Saccharomyces cerevisiae mutant strains defective in the protection against reactive oxygen species and found that only YAP1 deletion resulted in a significant enhancement in the detection of oxidative damage. To our surprise, YAP1 deletion also caused an increased cellular sensitivity to a variety of DNA damage. This altered sensitivity appears to be independent of oxidative damage because under conditions in which vitamin C treatment rescued oxidative damage, it failed to reverse the phenotypes caused by other types of DNA damage. Furthermore, although inactivation of cell permeability genes enhanced the RNR3-lacZ detection sensitivity particularly to large molecular weight compounds, their effects on small molecular oxidative agents are minimal. Taken together, this study helps to create a hypersensitive genotoxicity testing system to a broad range of DNA-damaging agents by deleting a single yeast gene. This article was published in Toxicol Sci and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version