alexa Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Butler AE, Janson J, Soeller WC, Butler PC

Abstract Share this page

Abstract Nondiabetic obese humans adapt to insulin resistance by increasing beta-cell mass. In contrast, obese humans with type 2 diabetes have an approximately 60\% deficit in beta-cell mass. Recent studies in rodents reveal that beta-cell mass is regulated, increasing in response to insulin resistance through increased beta-cell supply (islet neogenesis and beta-cell replication) and/or decreased beta-cell loss (beta-cell apoptosis). Prospective studies of islet turnover are not possible in humans. In an attempt to establish the mechanism for the deficit in beta-cell mass in type 2 diabetes, we used an obese versus lean murine transgenic model for human islet amyloid polypeptide (IAPP) that develops islet pathology comparable to that in humans with type 2 diabetes. By 40 weeks of age, obese nontransgenic mice did not develop diabetes and adapted to insulin resistance by a 9-fold increase (P < 0.001) in beta-cell mass accomplished by a 1.7-fold increase in islet neogenesis (P < 0.05) and a 5-fold increase in beta-cell replication per islet (P < 0.001). Obese transgenic mice developed midlife diabetes with islet amyloid and an 80\% (P < 0.001) deficit in beta-cell mass that was due to failure to adaptively increase beta-cell mass. The mechanism subserving this failed expansion was a 10-fold increase in beta-cell apoptosis (P < 0.001). There was no relationship between the extent of islet amyloid or the blood glucose concentration and the frequency of beta-cell apoptosis. However, the frequency of beta-cell apoptosis was related to the rate of increase of islet amyloid. These prospective studies suggest that the formation of islet amyloid rather than the islet amyloid per se is related to increased beta-cell apoptosis in this murine model of type 2 diabetes. This finding is consistent with the hypothesis that soluble IAPP oligomers but not islet amyloid are responsible for increased beta-cell apoptosis. The current studies also support the concept that replicating beta-cells are more vulnerable to apoptosis, possibly accounting for the failure of beta-cell mass to expand appropriately in response to obesity in type 2 diabetes.
This article was published in Diabetes and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords