alexa Increased (E)-4-hydroxy-2-nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression.

Author(s): Selley ML

Abstract Share this page

Abstract BACKGROUND: (E)-4-Hydroxy-2-nonenal (HNE) is a highly electrophilic end-product of lipid peroxidation. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelial nitric oxide synthase (NOS). ADMA is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). DDAH contains a nucleophilic cysteine residue in its active site. There is an increase in lipid peroxidation in major depression. Major depression is associated with the development of coronary heart disease (CHD) and greatly increases morbidity and mortality. There is an increase in circulating ADMA in CHD and vascular risk factors. OBJECTIVES: To determine plasma HNE, ADME and nitric oxide (NO) concentrations in patients with major depression compared to normal volunteers and to examine the effect of HNE on ADMA formation and DDAH activity in cultured endothelial cells. METHODS: The study was conducted in 25 patients with major depression (DSM-IV criteria) and 25 healthy control subjects. Plasma concentrations of HNE were determined as the O-pentafluorylbenzyl oxime using capillary column GC-MS and deuterated HNE as the internal standard; ADME by LC-MS-MS using 13C6-L-arginine as the internal standard; and NO by GC-MS following reduction to nitrate and nitrite and derivatisation to the pentafluorobenzyl derivative using [15N]nitrate and [15N]nitrite as the internal standards. Human umbilical vein endothelial cells were incubated in serum-free medium in the presence of HNE. The concentration of ADMA in the medium was determined by LC-MS-MS. DDAH activity was determined by measuring L-citrulline in endothelial cell lysates using LC-MS. RESULTS: There was a significant increase in the plasma concentration of HNE (P<0.0001) and ADMA (P<0.0002) in patients with major depression. There was a significant decrease in the plasma concentration of NO (P<0.0001). A significant positive correlation was found between the plasma concentrations of HNE and ADMA (r=0.63, P<0.0001). A significant negative correlation was detected between the plasma concentrations of ADMA and NO (r=-0.595, P<0.0001). HNE significantly increased ADMA formation (P<0.0001) and significantly decreased DDAH activity (P<0.0001) in cultured endothelial cells. The effects of HNE on DDAH activity were significantly attenuated by the addition of glutathione (P<0.0001). LIMITATIONS: No allowance was made for the phase of the menstrual cycle which could influence plasma nitric oxide concentrations. CONCLUSIONS: There is an increase in circulating HNE in major depression. HNE inactivates the cysteine residue in the active site of endothelial DDAH leading to the accumulation of ADMA in the circulation. The ADMA then decreases the production of eNOS. This could reduce the amount of NO diffusing from cerebral blood vessels to nearby neurons and influence the release of neurotransmitters. ADMA also constricts cerebral blood vessels and may contribute to the decreased regional perfusion in major depression. The accumulation of ADMA could explain the increased risk of CHD in major depression. The preservation of DDAH activity and the reduction of ADMA accumulation may represent a novel therapeutic approach to the treatment of major depression. Copyright 2003 Elsevier B.V. This article was published in J Affect Disord and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords