alexa Increased immunogenicity of tumor vaccines complexed with anti-Gal: studies in knockout mice for alpha1,3galactosyltransferase.
Biochemistry

Biochemistry

Journal of Glycobiology

Author(s): LaTemple DC, Abrams JT, Zhang SY, Galili U

Abstract Share this page

Abstract A major prerequisite for the success of tumor vaccines is their effective uptake by antigen-presenting cells (APCs) and transport of these APCs to the draining lymph nodes, where the processed and presented tumor-associated antigens activate tumor-specific naive T cells. We previously suggested that the immunogenicity of autologus tumor vaccines in humans may be augmented by engineering vaccinating tumor cell membranes to express alpha-galactosyl (alpha-gal) epitopes (i.e., Galalpha1,3Galbeta1,4GlcNAc-R). Subsequent in situ binding of natural anti-Gal IgG molecules to these epitopes would result in the formation of immune complexes that target tumor vaccines for uptake by APCs, via the interaction of the Fc portion of anti-Gal with Fcgamma receptors on APCs. This hypothesis was tested in a unique experimental animal model of knockout mice for alpha1,3galactosyltransferase (alpha1,3GT) and the mouse melanoma B16-BL6 (referred to here as BL6). Like humans, these mice lack alpha-gal epitopes and produce anti-GaL BL6 melanoma cels are highly tumorigenic, and like human tumor cells, they lack alpha-gal epitopes. Expression of alpha-gal epitopes on these melanoma cells was achieved by stable transfection with alpha,3GT cDNA. The transfected melanoma cells (termed BL6alphaGT) express approximately 2 x 10(6) alpha-gal epitopes per cell and readily form immune complexes with anti-Gal. Vaccination of the mice with 2 x 10(6) irradiated melanoma cells that express alpha-gal epitopes, followed by challenge with 0.5 x 10(6) live parental melanoma cells, resulted in protection for at least 2 months (i.e, no tumor growth) in one-third of the mice, whereas all mice immunized with irradiated parental melanoma cells developed tumors 21-26 days post-challenge. The proportion of protected mice doubled when the mice were immunized twice with irradiated melanoma cells expressing alpha-gal epitopes and challenged with 0.2 x 10(6) live BL6 cells. Histological studies on the developing tumors in challenged mice that were immunized with melanoma cells expressing alpha-gal epitopes demonstrated extensive infiltration of T lymphocytes and macrophages, whereas no mononuclear cell infiltrates were observed in tumors of mice immunized with parental tumor cells. Overall, these studies imply that immunization of alpha1,3GT knockout mice with BL6 melanoma cells that express alpha-gal epitopes elicits, in a proportion of the population, protective immune response against the same tumor lacking such epitopes. These studies further suggest that similar immunization of cancer patients with autologous tumor vaccines that are engineered to express alpha-gal epitopes may increase the immune response to autologous tumor-associated antigens and, thus, may elicit immune-mediated destruction of metastatic cells expressing these antigens.
This article was published in Cancer Res and referenced in Journal of Glycobiology

Relevant Expert PPTs

Recommended Conferences

  • International Conference on Glycobiology
    Sep 21-22, 2017, Crowne Plaza Houston River Oaks, Houston, USA
  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • International Conference on Glycobiology
    Oct 02-04, 2017 Atlanta, USA
  • 4th International Conference on Glycobiology and Glycochemistry
    July 16-18, 2018 Melbourne, Australia
  • 4th Glycobiology World Congress
    September 17-19, 2018 Rome, Italy
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords