alexa Increased situation awareness in major incidents-radio frequency identification (RFID) technique: a promising tool.
Engineering

Engineering

Journal of Aeronautics & Aerospace Engineering

Author(s): Jokela J, Rdestad M, Gryth D, Nilsson H, Rter A,

Abstract Share this page

Abstract INTRODUCTION: In mass-casualty situations, communications and information management to improve situational awareness is a major challenge for responders. In this study, the feasibility of a prototype system that utilizes commercially available, low-cost components, including Radio Frequency Identification (RFID) and mobile phone technology, was tested in two simulated mass-casualty incidents. METHODS: The feasibility and the direct benefits of the system were evaluated in two simulated mass-casualty situations: one in Finland involving a passenger ship accident resulting in multiple drowning/hypothermia patients, and another at a major airport in Sweden using an aircraft crash scenario. Both simulations involved multiple agencies and functioned as test settings for comparing the disaster management's situational awareness with and without using the RFID-based system. Triage documentation was done using both an RFID-based system, which automatically sent the data to the Medical Command, and a traditional method using paper triage tags. The situational awareness was measured by comparing the availability of up-to date information at different points in the care chain using both systems. RESULTS: Information regarding the numbers and status or triage classification of the casualties was available approximately one hour earlier using the RFID system compared to the data obtained using the traditional method. CONCLUSIONS: The tested prototype system was quick, stable, and easy to use, and proved to work seamlessly even in harsh field conditions. It surpassed the paper-based system in all respects except simplicity of use. It also improved the general view of the mass-casualty situations, and enhanced medical emergency readiness in a multi-organizational medical setting. The tested technology is feasible in a mass-casualty incident; further development and testing should take place. This article was published in Prehosp Disaster Med and referenced in Journal of Aeronautics & Aerospace Engineering

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords