alexa Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.
Oncology

Oncology

Journal of Integrative Oncology

Author(s): van Der Wel A, Nijsten S, Hochstenbag M, Lamers R, Boersma L,

Abstract Share this page

Abstract PURPOSE: With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. METHODS AND MATERIALS: Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. RESULTS: The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2\% +/- 4.9\% to 34.0\% +/- 5.8\% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6\% +/- 3.2\% to 21.9\% +/- 3.8\% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9\% +/- 2.3\% to 22.3\% +/- 2.2\% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2\% +/- 5.6\% for CT and 22.8\% +/- 7.1\% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5\% and 18.3\% (p = 0.009) for CT and PET-CT planning, respectively. CONCLUSION: In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13\% to 18\%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning. This article was published in Int J Radiat Oncol Biol Phys and referenced in Journal of Integrative Oncology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords