alexa Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Ali N, Dashti N, AlMailem D, Eliyas M, Radwan S

Abstract Share this page

Abstract INTRODUCTION: Transconjugant bacteria with combined potential for hydrocarbon utilization and heavy metal resistance were suggested by earlier investigators for bioremediation of soils co-contaminated with hydrocarbons and heavy metals. The purpose of this study was to offer evidence that such microorganisms are already part of the indigenous soil microflora. METHODS: Microorganisms in pristine and oily soils were counted on nutrient agar and a mineral medium with oil as a sole carbon source, in the absence and presence of either sodium arsenate (As V), sodium arsenite (As III) or cadmium sulfate, and characterized via 16S rRNA gene sequencing. The hydrocarbon-consumption potential of individual strains in the presence and absence of heavy metal salts was measured. RESULTS: Pristine and oil-contaminated soil samples harbored indigenous bacteria with the combined potential for hydrocarbon utilization and As and Cd resistance in numbers up to 4 × 10⁵ CFU g⁻¹. Unicellular bacteria were affiliated to the following species arranged in decreasing order of predominance: Bacillus subtilis, Corynebacterium pseudotuberculosis, Brevibacterium linens, Alcaligenes faecalis, Enterobacter aerogenes, and Chromobacterium orangum. Filamentous forms were affiliated to Nocardia corallina, Streptomyces flavovirens, Micromonospora chalcea, and Nocardia paraffinea. All these isolates could grow on a wide range of pure aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy, and could consume oil and pure hydrocarbons in batch cultures. Low As concentrations, and to a lesser extent Cd concentrations, enhanced the hydrocarbon-consumption potential by the individual isolates. CONCLUSION: There is no need for molecularly designing microorganisms with the combined potential for hydrocarbon utilization and heavy metal resistance, because they are already a part of the indigenous soil microflora. This article was published in Environ Sci Pollut Res Int and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords